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What have we
learned in 80 years
of classical
computing that
remains useful for
programming
utility-scale HPC-
QPU systems?
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Food for thought: why do build these
systems and how should we help people
program them?

* Marvin Minsky (1967): “programming is a good medium for expressing
poorly understood and sloppily formulated ideas”

* Alan J. Perlis, Foreword to SICP (1985): “a programmer should acquire
good algorithms and idioms.”

* Harold Abelson, SICP (1985): “Programs must be written for people to
read, and only incidentally for machines to execute.”
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Most pivotal advances come from abstract
understanding of resources

Space, Time Space, Time
Superposition, Entanglement, Interference

The theory of quantum computation and quantum computational complexity need to become substantially more streamlined to address
upcoming needs beyond 104 logical qubits. Much harder, urgent, underfunded and unattended problem.
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Lesson 1: good abstract machines solve 80% of
the algorithm development problem

Input tape
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Random Abstract Machines

Good abstract machines have instructions referring to functions and high-level objects. QRAM/QRASP are hardware simulators.
Nufez-Corrales, S., 2023. arXiv:2307.08422.
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But: none of the existing quantum abstract

machines are adequate!

L "Head R
—>

S TABLE I
M (T
/ ﬂ-'-ﬂ;‘l)f / / / / / / / "’*. ANALYSIS OF PREVAILING QUANTUM ABSTRACT MACHINES
Yo /B [ B I TR . T Proms e
t=t - D IEEEEE v Criterion  Description QTM [19] QRAM [19] QRASP[19] QRM [20] QCM [21] QLC [37]
Safe storage tape 0 2 | | 1 Turing-complete & universal v v v v v v
/ / / / I, / / / / / """" e Quantum Register 2 Finite symbolic state v v
o P Avw| (Conal| ¢ ; 0@ 3 Symbolic denotational semantics
bit 0‘1“/ \:t ! (- Lu—‘ E‘ R "-J'L_'i 4 Representation-independent data types
¥ ¥ e —— @L—!D IE‘”"\I & 5  Stable instruction set architecture
t=T Allowed clissicl g:%% Comter — oecitc - 6 Veriﬁ_ab]e formal content ) v v s v 'f; v
...00100101. .. tetions ‘msuctions 7 Classical-quantum regularity v VT v
8  Compact instruction representation v v v v v
@ ® 9  Degeneracy of implementation v v v v v v
; ” ) 10 Predictable procedural composability v v 's v
Classical host 11 Intrinsic ensemble semantics v v v
A-calculus A terms acC 12 Resource-constructible functions v v N v v v
__ Propram Q.0
A e k] LT ] T it 13 Standard instruction cycle v v v v
Function i 14 Classical control flow v Vg g v
.| | applications p.mlﬁm . Infinite quantum register 15 Quantum/hybrid control flow v v
Control Ri LOAD | Infmitesetofolassical ~ MEAS:  AC < Q)] Total 6v 8v 9 11v 11v 6v
structures ki ADD- | repister store instructions, IC—IC+2
ks SUB inel. quantum ones ¥ partial satisfaction due to explicit mention of unitary gates
(c) )
RAM \
RQ:_:.;:;?: ol LIS Quantum registers Quantum assembly language program
Section | [ . o T add res copy 1 into res 168 i i 1
| S e Cf . Systom - Tser | e e Nufiez-Corrales, S., Di Matteo, O., Dumbell, J., Edwards, M., Giusto, E., Pakin,
Table e aif 31 rine 1301y © if 1 1=y, cane from 13 : . . .
— ina [ 1, 0/ \ o e e S., Stirbu, V.Stechty, M. (2025, submitted). Productive Quantum Programming
Section br| ... s mulresx  ; aultiply res by x . .
© radn 1 decrment Needs Better Abstract Machines. 2025 IEEE International Conference on
I ifu| ... - : 7 13: jmp 11 B loop start . . . . .
o o SR ﬂ #1412 come fron 12 Quantum Computing and Engineering (QCE). IEEE/arXiv (submitted).
(e} U]

Fig. 1. Graphical representations of: (a) the Quantum Turing Machine [13], (b) the Quantum Random Access Machine [16], [17], (c) the Quantum Lambda
Calculus Machine [18], (d) the Quantum Random Access Stored Program Machine [19], (e) the Quantum Register Machine [20], and (f) the Quantum Control
Machine (with the code example taken verbatim from the QCM paper) [21]
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Lesson 2: the performance-expressiveness
trade-off is universal and unavoidable

Performance:

Expressive power:

m— deal
How few resources can

I use to solve a specific
e.p. optimized problem with tool X?

How many different
problems can I describe
(and solve!) with tool X?

= == reglistic

== = performance optimized

Harder to measure: Easier to measure:

Expressive power
-

- # of use cases i Good programming i - Time
- # of instances of 1 | practices help us get much | -~ Resource
] ;Odfel.reusef J NN | closer to the realistic trade- | ~ Usage/pressure
OrINes orcode \ : off curve. i Limited by
Limited by: N - Technology
: - Available hardware
Theoretical bounds reSOUrces

- Problem features (e.g., size)

) Performance I - Hidden costs of
H“’.“";‘”. nebe.clj.i (e.ga, code : compilation / interpretation
maintainabliity an We lack programming models that induce good practices in quantum + OS

readability) computing. Pulse-level and circuit-level programming are likely not one of
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Lesson 3: control software becomes control
hardware with time
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Pulse-level synthesis and even higher quantum control primitives will likely become
part of an SoC-like architecture.
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Lesson 4: good stacks enable opportunistic
refinement for hw-sw co-design

How we think it is: What we should aim for:

Logical ]

layer Hardware

detail free
zone

Classical-quantum organization

| Physical Logical qubits
> QECC+QEM
Pulse-level synthesis
Physical qubits

Current quantum stacks focus too much on qubit function/performance, not
enough on how the interfaces across layers should communicate.
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Lesson 5: good stacks separate concerns
efficiently for programmers

How we think it is: What we should aim for:
Shors, Groveys
Logical ';°Q‘°‘=‘10peraﬁons QUantUm ‘E"Q‘Orr‘tl‘nrnsmnlg Hard
layer ] " Magie statgs _ ardware
I Controjs | : detail free
l Re | zone
Logical quanty
m prOCesSOr
Classical-quantum organization
| Physical Logical qubits

Q'—'antu

antum.
limiteg layer
aMmplifigrs

l Readout I

QECC+QEM
. Pulse-level synthesis
Physical qubits

Heuristic: the difficulty of programming scales roughly proportional to the
cube of the number of hardware details required to write code.
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Lesson 6: circuits are not high-level constructs
?

Low level
Hardwar

e

Programs

A. Denotational semantics: constructs isomorphic to functions within a space of objects w/ a closed
algebra
B. Representation independent: constructs should not vary if the “digital” representation changes

C. Compositionality: the effect of large constructs is understandable from composition of smaller ones
without abandoning representation independence

Quantum algorithms and applications will be found more quickly once we find true high-level constructs. Not there yet.
Nufez-Corrales, S., Frenkel, M. and Abreu, B., QCE 23; Di Matteo O, Nufiez-Corrales S, Stechly M, Reinhardt SP, Mattson T.
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Why do we want good abstractions?
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Separation of Well-defined Opportunisti
concerns interactions c refinement
between

adjacent layers

Di Matteo, O., Nufiez-Corrales, S., Stechty, M., Reinhardt, S.P. and Mattson, T., 2024, September. An abstraction hierarchy toward productive
quantum programming. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 1, pp. 979-989). IEEE.
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The state of quantum programming today

Programming model
N 7 Maps algorithms onto source code

Quantum programs executing
amidst classical control structure.

Execution model
Abstractions for how code executes

:I I: Logical operations resulting from compiling
ING

N
N
N

elements of programming model, with
awareness of the target hardware model

Hardware model
Maps program execution onto

models of computer systems

e
v
|
|
] L 0] ]

Orchestrated pulses and hardware-specific
quantum instructions resulting from
compiling elements of execution model
to the target hardware.

2024 2XXX

Di Matteo, O., Nufiez-Corrales, S., Stechly, M., Reinhardt, S.P. and Mattson, T., 2024, September. An abstraction hierarchy toward productive
guantum programming. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 1, pp. 979-989). IEEE.
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Quantum programming languages lack
sufficient expressiveness and productivity

Complexity Metrics for Quantum Programming Languages
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Corrales-Garro, F., Valerio-Ramirez, D., Nufiez-Corrales, S. (2025) Is Productivity in Quantum Programming Equivalent to Expressiveness?

arxiv:2504.08876
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Lesson 7: generation/validation replace
programming at very large hardware scales

VLQI: very large quantum

VLSI: generate and optimize -> validate ) .
integration

dd
! module my_nand (input x, y, output f);

Qm
supplyl vdd; Qg ILI | I ‘
l supply0 gnd; Qi‘ m — '_"_ll ]
_qlz p wire a; 2 I
// NAND gate body 10) i —{ H| QO | '

'F‘ | |

d p2 = | |
pmos pl (f, vdd, x); |0) (H|— —{H| :> 0?
pmos p2 (f, vdd, y); ! L ! -
$— /=(w)| nmosnl (f, a, x); 0 —x}—#] AR t] . %

‘ : utip-qip  go : -
" " l nmos n2 (a, gnd, y); g
. " endmodule g1
a ] |1

g — t
g - - _} /=)

Utility-scale, fault-tolerant quantum computers pose a wicked control problem for humans. Most likely, many of these are NP-HARD. VLQI
will be self-bootstrapping.
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Lesson 8: resist to optimize within differences
that make no difference

programs programs

circuits circuits

pulses pulses

Optimized pulse-level code

Yy Vv

As quantum computers become larger (>104 logical qubits), optimizations must occur as high up as possible.
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Lesson 9: modularity and indirection organize
complexity o Befie®)  |eafos)
1%

(AN
alloc
ull e A VAR I CY S > +11 ﬂllﬂ
NS
it EEZNL
LR i 1 7 IR 1 R +o+ 1 (2] ]1]3]
NSO
1 Fig. 17. Result of symmetrization on the initial pro-  Fig. 18. Unique physical representation of state
H gram state from Figure 12 (normalizing amplitudes not 1< [1,2] (normalizing amplitudes not shown),
shown). The symmetrized free list exists in a superpo-  which stores datain a superposition of all possible
SORTING LINKED LIST sition of all possible permutations. allocation sites and is history-independent.
Data Structure Reversible Recursion Mutation Complexity LoC Qubits Gates
List
— length Yes Yes No O(n) 20 34n + 32 23n+3
TR EE — sum Yes Yes No O(n) 20 34n + 40 21n+3
blog.algomaste r_io — find_pos Yes Yes No O(n) 20 42n+31 19n+3
— remove Yes Yes Yes O(n) 48 26n + 56 42n+3
Stack (list)
- push_front Yes No Yes o(1) 8 40 4
— pop_front Yes No Yes o(1) 8 48 4
Queue (list)
— push_back Yes Yes Yes O(n) 21 34n + 32 24n
— pop_front Yes No Yes 0(1) 8 48 4
String (word)
— is_empty Yes No No 0o(1) 2 25 3
— length Yes No No o(1) 2 24 1
E — get_prefix Yes No No O(k) 8 11k 52
— get_substring Yes No No O(k) 8 12k 54
— get Yes No No O(k) 7 6k+1 19
— is_prefix Yes Yes No O(poly(k)) 26 kK +11k 98k +3
— num_matching Yes Yes No O(poly(k)) 42  Kk*+13k+4 110k + 127
GR APH QUEUE : ~ equal Yes No No o(k) 8 6k+3 5
— concat Yes No No O(k) 9 11k 8
— compare Yes Yes No O(poly(k)) 27 5k% + 12k 108k +3
sT A CK Set (radix tree)
— insert Yes Yes Yes O(poly(k)) 136 13k*+21k+9  1440k% + 5056k
— contains Yes Yes No O(poly(k)) 334 17k*+18k+2 784k%+1612k+1
Set (hash table)*
— insert Yes Yes Yes O(n) 63 52n+72 68n + 15
— contains Yes Yes No O(n) 7 52n + 81 136n + 39

* Hash table-based sets are not history-independent.

Few guantum data structures, more needed to scale up to utility-scale systems. _
Yuan, C. and Carbin, M., 2022. OOPSLAZ2.
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Leadership Class Compute Facility - LCCF
(TACC+NCSA+IQUIST)
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Separation of concerns to promote
opportunistic refinement

Quantum assembly language

User program :
Traps and interrupts?

Ideal gates
Lo HPC svst QPU Instruction set QPU state
% yS em QPU architectu re Ideal gates to native gates
X < Activation/error signals
é QPU library
Z

Interface Scheduling/mapping of native gates

>
. Qubit reset, native gates,
( Hardware QPU deVICE on measurement
manager testbed + control Quantum control
hardware/software Pulse level programming
Resonators, Transmons

Testbed + device

&=
©
Y
o
= <
N
D)
o

NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Lab




... differs from how implementation looks like

U 1
Y Y

Remote
| Backend | R QPU
manager
access
Az i
lccfq Results Task QPU state
QPU code IID')t/)thon — handler dispatcher monitor
| }ary . . A

hardware §
manager

]

< = Queue
accelerated J\, State
ML tasks o machine
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Academic hardware - Back to the 1940-1950

UPenn 1945 (ENIAC) Harvard 2024 (HQI)

Staying at the forefront is messy. But: not all mess is unavoidable.
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Vendor hardware - Back to the 1950-1960

UF Gainesville 1968 (Burroughs) Munich Valley 2024 (IQM)

Market pressures drive innovation fast. Market pressures explain technology gaps.
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Plan to throw one (implementation)
away; you will, anyhow.

— Pred Brooks —

AZ QUOTES
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Back to basics: seeking expressiveness

Notation as a Tool of Thought

Kenneth E. Iverson
IBM Thomas J. Watson Research Center
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The importance of nomenclature, notation, and
language as tools of thought has long been recog-
nized. In chemistry and in botany, for example,
the establishment of systems of nomenclature by
Lavoisier and Linnaeus did much to stimulate and
to channel later investigation. Concerning lan-
guage, George Boole in his Laws of Thought
[1, p24] asserted '"That language is an instru-
ment of human reason, and not merely a medium
for the expression of thought, is a truth generally
admitted."

Mathematical notation provides perhaps the
best-known and best-developed example of lan-
guage used consciously as a tool of thought. Recog-
nition of the important role of notation in mathe-
matics is clear from the quotations from mathema-
ticians given in Cajori's A History of Mathemat-
ical Notations [2, pp.332,331]. They are well
worth reading in full, but the following excerpts
suggest the tone:

By relieving the brain of all unnecessary work,
a good notation sets it free to concentrate on
more advanced problems, and in effect increases
the mental power of the race.

A.N. Whitehead

Communications August 1980
of Volume 23
the ACM Number 8

1. Important Characteristics of Notation

In addition to the executability and universali-
ty emphasized in the introduction, a good notation
should embody characteristics familiar to any user
of mathematical notation:

-Ease of expressing constructsarising in problems.
«Suggestivity.

-Ability tosubordinate detail.

-Economy.

-Amenability to formal proofs.

The foregoing is not intended as an exhaustive list,

but will be used to shape the subsequent discus-
sion.



Conclusion: we need prescriptive, abstraction-driven
design toward HPC-QPU programmability

Low: hardware engs + Mid: comp. architects + High: tool writers + app
firmware engs systems programmers developers
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