
Programming models
for hybrid HPC-QPU

applications:
the deeper issues

Santiago Núñez-Corrales, PhD
Quantum Lead Research Scientist, National Center for Supercomputing Applications
Faculty Affiliate, Illinois Quantum Information Science and Technology Center
Core Faculty, Program on Arms Control & Domestic and International Security
University of Illinois Urbana-Champaign

National Center for Supercomputing Applications

Mission: Bring
people, computing
and data together
to benefit society

NCSA’s mission in quantum computing

Scientific software
development and

research consulting
Simulation, networking
and cyberinfrastructure

Training and advanced
visualization

CI for
Quantum

Information
Science and
Engineering

Quantum
Simulators
and QPU

access

Productive
Quantum

Programming
Models

Utility-Driven
Quantum

Applications

Training the
community

Broadening
Quantum
adoption

Dependable
HPC-QPU

integration

 E
xp

er
ti

se

Ar
ea

s

Icons created by Freepik - Flaticon

Quantum Instruction Set Architectures

Quantum Pulse-Level Programming

Quantum Error
Correction

Quantum Micro/Nano programming

Quantum Circuit
Compilation

Quantum Circuit Execution

Quantum High Level Languages

Kernels/Libs QML Applications

HPC-QPU
integration

Quantum
Abstract

Machines

Quantum
Networks

Distributed
Classical-
Quantum

Computing

Q-UI/UX

What have we
learned in 80 years
of classical
computing that
remains useful for
programming
utility-scale HPC-
QPU systems?

Food for thought: why do build these
systems and how should we help people
program them?

• Marvin Minsky (1967): “programming is a good medium for expressing
poorly understood and sloppily formulated ideas”

• Alan J. Perlis, Foreword to SICP (1985): “a programmer should acquire
good algorithms and idioms.”

• Harold Abelson, SICP (1985): “Programs must be written for people to
read, and only incidentally for machines to execute.”

Most pivotal advances come from abstract
understanding of resources

Space, Time Space, Time
Superposition, Entanglement, Interference

The theory of quantum computation and quantum computational complexity need to become substantially more streamlined to address
upcoming needs beyond 104 logical qubits. Much harder, urgent, underfunded and unattended problem.

Lesson 1: good abstract machines solve 80% of
the algorithm development problem

Good abstract machines have instructions referring to functions and high-level objects. QRAM/QRASP are hardware simulators.
Núñez-Corrales, S., 2023. arXiv:2307.08422.

Random Abstract Machines

But: none of the existing quantum abstract
machines are adequate!

Núñez-Corrales, S., Di Matteo, O., Dumbell, J., Edwards, M., Giusto, E., Pakin,
S., Stirbu, V.Stęchły, M. (2025, submitted). Productive Quantum Programming
Needs Better Abstract Machines. 2025 IEEE International Conference on
Quantum Computing and Engineering (QCE). IEEE/arXiv (submitted).

Lesson 2: the performance-expressiveness
trade-off is universal and unavoidable

Performance

Ex
pr

es
si

ve
 p

ow
er

Expressive power:

How many different
problems can I describe
(and solve!) with tool X?

Performance:

How few resources can
I use to solve a specific
problem with tool X?

Harder to measure:

- # of use cases
- # of instances of

code reuse
- # of lines of code

Easier to measure:

- Time
- Resource

usage/pressure

Limited by:

- Theoretical bounds
- Problem features (e.g., size)
- Human needs (e.g., code

maintainability and
readability)

Limited by

- Technology
- Available hardware

resources
- Hidden costs of

compilation / interpretation
+ OS

ideal
realistic
e.p. optimized

performance optimized

Good programming
practices help us get much
closer to the realistic trade-
off curve.

We lack programming models that induce good practices in quantum
computing. Pulse-level and circuit-level programming are likely not one of
them.

Lesson 3: control software becomes control
hardware with time

Pulse-level synthesis and even higher quantum control primitives will likely become
part of an SoC-like architecture.

Lesson 4: good stacks enable opportunistic
refinement for hw-sw co-design

How we think it is: What we should aim for:

Physical qubits
Pulse-level synthesis

QECC+QEM
Logical qubits

Classical-quantum organization
Classical-quantum ISA
Orchestration (aka OS)

Languages

Applications

Current quantum stacks focus too much on qubit function/performance, not
enough on how the interfaces across layers should communicate.

Hardware
detail free
zone

Algorithms (aka Libraries)

Lesson 5: good stacks separate concerns
efficiently for programmers

How we think it is: What we should aim for:

Heuristic: the difficulty of programming scales roughly proportional to the
cube of the number of hardware details required to write code.

Physical qubits
Pulse-level synthesis

QECC+QEM
Logical qubits

Classical-quantum organization
Classical-quantum ISA
Orchestration (aka OS)

Languages

Applications

Hardware
detail free
zone

Algorithms (aka Libraries)

Lesson 6: circuits are not high-level constructs

Hardwar
e

ProgramsLow level High level

?

A. Denotational semantics: constructs isomorphic to functions within a space of objects w/ a closed
algebra
B. Representation independent: constructs should not vary if the “digital” representation changes
C. Compositionality: the effect of large constructs is understandable from composition of smaller ones
without abandoning representation independence

Quantum algorithms and applications will be found more quickly once we find true high-level constructs. Not there yet.
Núñez-Corrales, S., Frenkel, M. and Abreu, B., QCE 23; Di Matteo O, Núñez-Corrales S, Stęchły M, Reinhardt SP, Mattson T.
arXiv:2405.13918.

Why do we want good abstractions?

Separation of
concerns

Well-defined
interactions

between
adjacent layers

Opportunisti
c refinement

…

Di Matteo, O., Núñez-Corrales, S., Stęchły, M., Reinhardt, S.P. and Mattson, T., 2024, September. An abstraction hierarchy toward productive
quantum programming. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 1, pp. 979-989). IEEE.

The state of quantum programming today

Di Matteo, O., Núñez-Corrales, S., Stęchły, M., Reinhardt, S.P. and Mattson, T., 2024, September. An abstraction hierarchy toward productive
quantum programming. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 1, pp. 979-989). IEEE.

2XXX2024

???

Quantum programming languages lack
sufficient expressiveness and productivity

Corrales-Garro, F., Valerio-Ramírez, D., Núñez-Corrales, S. (2025) Is Productivity in Quantum Programming Equivalent to Expressiveness?
arXiv:2504.08876

Lesson 7: generation/validation replace
programming at very large hardware scales
VLSI: generate and optimize -> validate

Utility-scale, fault-tolerant quantum computers pose a wicked control problem for humans. Most likely, many of these are NP-HARD. VLQI
will be self-bootstrapping.

VLQI: very large quantum
integration

Lesson 8: resist to optimize within differences
that make no difference

circuits

pulses

programs

Optimized pulse-level code

circuits

pulses

programs

As quantum computers become larger (>104 logical qubits), optimizations must occur as high up as possible.

Lesson 9: modularity and indirection organize
complexity

Yuan, C. and Carbin, M., 2022. OOPSLA2.
Few quantum data structures, more needed to scale up to utility-scale systems.

Leadership Class Compute Facility - LCCF
(TACC+NCSA+IQUIST)

QPU @ IQUIST
HPC+AI @ NCSA

Tight HPC-AI-QPU integration Development of quantum
cyberinfrastructure

Deploy research and user
access

QPU device on
testbed + control

hardware/software

Interface

QPU Instruction set
QPU architecture

Quantum control
Pulse level programming
Resonators, Transmons

Qubit reset, native gates,
measurement

Scheduling/mapping of native gates

Ideal gates to native gates
QPU state

Activation/error signals

Ideal gates
Traps and interrupts?

Quantum assembly language

Separation of concerns to promote
opportunistic refinement

HPC system

QPU library

Hardware
manager

Testbed + device

N
CS

A :
 N

PC
F

IQ
U

IS
T:

 P
f a

ff
L a

b

User program

... differs from how implementation looks like

QPU code

HPC code

lccfq
Python
library

Backend
manager

Remote
QPU

access

Task
dispatcher

QPU state
monitor

hardware
manager

Results
handler

GPU
accelerated

ML tasks

Queue

State
machine

Academic hardware - Back to the 1940-1950

UPenn 1945 (ENIAC) Harvard 2024 (HQI)
Staying at the forefront is messy. But: not all mess is unavoidable.

Vendor hardware - Back to the 1950-1960

UF Gainesville 1968 (Burroughs) Munich Valley 2024 (IQM)

Market pressures drive innovation fast. Market pressures explain technology gaps.

Back to basics: seeking expressiveness

Conclusion: we need prescriptive, abstraction-driven
design toward HPC-QPU programmability

Low: hardware engs +
firmware engs

Mid: comp. architects +
systems programmers

High: tool writers + app
developers

Original circuit to QECC circuit

Optimized circuit to native gate set

Native gate set to naive pulses

Native pulses to intent-aware pulses

Intent-aware pulses to optimized pulses

QECC circuit to optimized circuit

Accessible qubit modality model

Quantum hardware

Quantum instructions/sigs

Quantum microprograms

Quantum nanoprograms

Quantum motifs

Classical-quantum VM

Resource management

CQ system services

CQ libraries

CQ languages + compilers

CQ assembler

Driving abstraction: Physics Pulses Circuits Instructions

CQ frameworks

Applications

Resources Algorithms Problems

hardw
are synthesis com

pilation
program

m
ing

O
S

org + arch

chip design

	Programming models for hybrid HPC-QPU applications: the deeper
	National Center for Supercomputing Applications
	Slide 3
	Slide 4
	What have we learned in 80 years of classical computing that re
	Food for thought: why do build these systems and how should we
	Most pivotal advances come from abstract understanding of resou
	Lesson 1: good abstract machines solve 80% of the algorithm dev
	But: none of the existing quantum abstract machines are adequat
	Lesson 2: the performance-expressiveness trade-off is universal
	Lesson 3: control software becomes control hardware with time
	Lesson 4: good stacks enable opportunistic refinement for hw-sw
	Lesson 5: good stacks separate concerns efficiently for program
	Lesson 6: circuits are not high-level constructs
	Why do we want good abstractions?
	The state of quantum programming today
	Quantum programming languages lack sufficient expressiveness an
	Lesson 7: generation/validation replace programming at very lar
	Lesson 8: resist to optimize within differences that make no di
	Lesson 9: modularity and indirection organize complexity
	Slide 21
	Separation of concerns to promote opportunistic refinement
	... differs from how implementation looks like
	Academic hardware - Back to the 1940-1950
	Vendor hardware - Back to the 1950-1960
	Slide 26
	Back to basics: seeking expressiveness
	Conclusion: we need prescriptive, abstraction-driven design tow

