Programming models
for hybrid HPC-QPU
applications:
the deeper 1ssues

Santiago Nunez-Corrales, PhD

Quantum Lead Research Scientist, National Center for Supercomputing Applications
Faculty Affiliate, lllinois Quantum Information Science and Technology Center

Core Faculty, Program on Arms Control & Domestic and International Security
University of Illinois Urbana-Champaign

National Center for
Supercomputing Applications

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

National Center for Supercomputing Applications

Mission: Bring
people, computing
and data together
to benefit society

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

NCSA’s mission in quantum computing

CI for
Quantum
Information

Quantum Productive
) Dependable
Simulators Quantum
HPC-QPU .
and QPU , . Programming
integration
access Models

Utility-Driven
Quantum
Science and Applications

Engineering

1 I 1

Scientific software
development and
research consulting

Training and advanced
visualization

Simulation, networking
and cyberinfrastructure

Q

2

p

Qs

Q o

X

W o7 -

Icons created by Freepik - Flaticon

1T ILLINOIS NCSA

Kernels/Libs QML Q-UI/UX Applications

Quantum High Level Languages
Quantum Instruction Set Architectures Quantum
: : Abstract
Quantum Micro/Nano programming Machines

Quantum Circuit Execution

HPC-QPU
integration

' ¢

Spin-filtering
o A defect
age

‘ [} GaNAs

What have we
learned in 80 years
of classical
computing that
remains useful for
programming
utility-scale HPC-
QPU systems?

National Center for
Supercomputing Applications

IIIIIIIIIIIIIIIIIIIIIIIIII -CHAMPAIGN

Food for thought: why do build these
systems and how should we help people
program them?

* Marvin Minsky (1967): “programming is a good medium for expressing
poorly understood and sloppily formulated ideas”

* Alan J. Perlis, Foreword to SICP (1985): “a programmer should acquire
good algorithms and idioms.”

* Harold Abelson, SICP (1985): “Programs must be written for people to
read, and only incidentally for machines to execute.”

I NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Most pivotal advances come from abstract
understanding of resources

Space, Time Space, Time
Superposition, Entanglement, Interference

The theory of quantum computation and quantum computational complexity need to become substantially more streamlined to address
upcoming needs beyond 104 logical qubits. Much harder, urgent, underfunded and unattended problem.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Lesson 1: good abstract machines solve 80% of
the algorithm development problem

Input tape
(Lln| - Table 2. SQRAM Machine Quantum Instruction Set
. Instruction Effect
read t «— gst + 1
gqs q
Program tape Register tape AQBIT pc «— pc +1
[P (70 CNOT tar QR[tar| «— tar x cnot(cont,inv, .. .)
P 1 cont inv pc—pc—+1
P, 7«2 GATE tar QRltar| — tar x gate(a,b,c,d)
i Finite T abed pee—petl — -
o “JCO““"‘ U““Lﬁ . HDMD tar | QRltar] — tar x gate(—o5, s, o5, —75)
, read read/write pc < pc+ 1
| ! DS|st] — measure(tar
P, MSRE tar st «— st +1
\. 7 pe+—pe+1
e PHASE tar QRtar| « tar x gate(1,0,0,17)
y pc <+ pc—+1
(O‘J‘Ol‘ ’Oi‘ Pl tar QR[tar] «— tar x gate(1,0,0,e™/?%)
Output tape pc—pc—+1

Random Abstract Machines

Good abstract machines have instructions referring to functions and high-level objects. QRAM/QRASP are hardware simulators.
Nufez-Corrales, S., 2023. arXiv:2307.08422.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

But: none of the existing quantum abstract

machines are adequate!

L "Head R
—>

S TABLE I
M (T
/ ﬂ-'-ﬂ;‘l)f / / / / / / / "’*. ANALYSIS OF PREVAILING QUANTUM ABSTRACT MACHINES
Yo /B [B I TR . T Proms e
t=t - D IEEEEE v Criterion Description QTM [19] QRAM [19] QRASP[19] QRM [20] QCM [21] QLC [37]
Safe storage tape 0 2 | | 1 Turing-complete & universal v v v v v v
/ / / / I, / / / / / """" e Quantum Register 2 Finite symbolic state v v
o P Avw| (Conal| ¢ ; 0@ 3 Symbolic denotational semantics
bit 0‘1“/ \:t ! (- Lu—‘ E‘ R "-J'L_'i 4 Representation-independent data types
¥ ¥ e —— @L—!D IE‘”"\I & 5 Stable instruction set architecture
t=T Allowed clissicl g:%% Comter — oecitc - 6 Veriﬁ_ab]e formal content) v v s v 'f; v
...00100101. .. tetions ‘msuctions 7 Classical-quantum regularity v VT v
8 Compact instruction representation v v v v v
@ ® 9 Degeneracy of implementation v v v v v v
; ”) 10 Predictable procedural composability v v 's v
Classical host 11 Intrinsic ensemble semantics v v v
A-calculus A terms acC 12 Resource-constructible functions v v N v v v
__ Propram Q.0
A e k] LT] T it 13 Standard instruction cycle v v v v
Function i 14 Classical control flow v Vg g v
.| | applications p.mlﬁm . Infinite quantum register 15 Quantum/hybrid control flow v v
Control Ri LOAD | Infmitesetofolassical ~ MEAS: AC < Q)] Total 6v 8v 9 11v 11v 6v
structures ki ADD- | repister store instructions, IC—IC+2
ks SUB inel. quantum ones ¥ partial satisfaction due to explicit mention of unitary gates
(c))
RAM \
RQ:_:.;:;?: ol LIS Quantum registers Quantum assembly language program
Section | [. o T add res copy 1 into res 168 i i 1
| S e Cf . Systom - Tser | e e Nufiez-Corrales, S., Di Matteo, O., Dumbell, J., Edwards, M., Giusto, E., Pakin,
Table e aif 31 rine 1301y © if 1 1=y, cane from 13 : . . .
— ina [1, 0/ \ o e e S., Stirbu, V.Stechty, M. (2025, submitted). Productive Quantum Programming
Section br| ... s mulresx ; aultiply res by x . .
© radn 1 decrment Needs Better Abstract Machines. 2025 IEEE International Conference on
I ifu| ... - : 7 13: jmp 11 B loop start
o o SR ﬂ #1412 come fron 12 Quantum Computing and Engineering (QCE). IEEE/arXiv (submitted).
(e} U]

Fig. 1. Graphical representations of: (a) the Quantum Turing Machine [13], (b) the Quantum Random Access Machine [16], [17], (c) the Quantum Lambda
Calculus Machine [18], (d) the Quantum Random Access Stored Program Machine [19], (e) the Quantum Register Machine [20], and (f) the Quantum Control
Machine (with the code example taken verbatim from the QCM paper) [21]

NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Lesson 2: the performance-expressiveness
trade-off is universal and unavoidable

Performance:

Expressive power:

m— deal
How few resources can

I use to solve a specific
e.p. optimized problem with tool X?

How many different
problems can I describe
(and solve!) with tool X?

= == reglistic

== = performance optimized

Harder to measure: Easier to measure:

Expressive power
-

- # of use cases i Good programming i - Time
- # of instances of 1 | practices help us get much | -~ Resource
] ;Odfel.reusef J NN | closer to the realistic trade- | ~ Usage/pressure
OrINes orcode \ : off curve. i Limited by
Limited by: N - Technology
: - Available hardware
Theoretical bounds reSOUrces

- Problem features (e.g., size)

) Performance I - Hidden costs of
H“’.“";‘”. nebe.clj.i (e.ga, code : compilation / interpretation
maintainabliity an We lack programming models that induce good practices in quantum + OS

readability) computing. Pulse-level and circuit-level programming are likely not one of

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Lesson 3: control software becomes control
hardware with time

- < o| [~]| || |G] " o Application
a -3 el e (e e g o a o Software
o o allallal|all& &
< < < || (<] <] | = & & Layer
Host Operating System Infrafat;l.;:ture
Core Core Core Core
i-Cache | d-Cache i-Cache ‘ d-Cache i-Cache | d-Cache i-Cache | d-Cache
L2 Cache L2 Cache L2 Cache L2 Cache
l L3 C.ache ‘ Physical
: Hardware
[_ System Bus) i i ‘ Layer
Multicor : ; ' :
Process ‘ Memory Controller ‘ | 1/0 Controller ‘ | [|
‘ Main Memory J | 1/0 Device ‘ ‘ | [|

Pulse-level synthesis and even higher quantum control primitives will likely become
part of an SoC-like architecture.

NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Lesson 4: good stacks enable opportunistic
refinement for hw-sw co-design

How we think it is: What we should aim for:

Logical]

layer Hardware

detail free
zone

Classical-quantum organization

| Physical Logical qubits
> QECC+QEM
Pulse-level synthesis
Physical qubits

Current quantum stacks focus too much on qubit function/performance, not
enough on how the interfaces across layers should communicate.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Lesson 5: good stacks separate concerns
efficiently for programmers

How we think it is: What we should aim for:
Shors, Groveys
Logical ';°Q‘°‘=‘10peraﬁons QUantUm ‘E"Q‘Orr‘tl‘nrnsmnlg Hard
layer] " Magie statgs _ ardware
I Controjs | : detail free
l Re | zone
Logical quanty
m prOCesSOr
Classical-quantum organization
| Physical Logical qubits

Q'—'antu

antum.
limiteg layer
aMmplifigrs

l Readout I

QECC+QEM
. Pulse-level synthesis
Physical qubits

Heuristic: the difficulty of programming scales roughly proportional to the
cube of the number of hardware details required to write code.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Lesson 6: circuits are not high-level constructs
?

Low level
Hardwar

e

Programs

A. Denotational semantics: constructs isomorphic to functions within a space of objects w/ a closed
algebra
B. Representation independent: constructs should not vary if the “digital” representation changes

C. Compositionality: the effect of large constructs is understandable from composition of smaller ones
without abandoning representation independence

Quantum algorithms and applications will be found more quickly once we find true high-level constructs. Not there yet.
Nufez-Corrales, S., Frenkel, M. and Abreu, B., QCE 23; Di Matteo O, Nufiez-Corrales S, Stechly M, Reinhardt SP, Mattson T.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Why do we want good abstractions?

| |
| |
| |
||

| [|
| [1
| |
[I B O

[]
]
]|

QuANTUM TG

Separation of Well-defined Opportunisti
concerns interactions c refinement
between

adjacent layers

Di Matteo, O., Nufiez-Corrales, S., Stechty, M., Reinhardt, S.P. and Mattson, T., 2024, September. An abstraction hierarchy toward productive
quantum programming. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 1, pp. 979-989). IEEE.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

The state of quantum programming today

Programming model
N 7 Maps algorithms onto source code

Quantum programs executing
amidst classical control structure.

Execution model
Abstractions for how code executes

:I I: Logical operations resulting from compiling
ING

N
N
N

elements of programming model, with
awareness of the target hardware model

Hardware model
Maps program execution onto

models of computer systems

e
v
|
|
] L 0]]

Orchestrated pulses and hardware-specific
quantum instructions resulting from
compiling elements of execution model
to the target hardware.

2024 2XXX

Di Matteo, O., Nufiez-Corrales, S., Stechly, M., Reinhardt, S.P. and Mattson, T., 2024, September. An abstraction hierarchy toward productive
guantum programming. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 1, pp. 979-989). IEEE.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Quantum programming languages lack
sufficient expressiveness and productivity

Complexity Metrics for Quantum Programming Languages

Programming Language
cirg

q#

qgiskit

qmod

qrisp

quapl

Vocabulary

cc

Effort

10000 4

80000 {

70000 4

60000

50000 4

40000

30000 {

20000 {

LOC vs CC LOC vs Effort CC vs Effort
drq Language 80000 { |- 1ouage quapl 80000 { quap!
drq crg
diskit a# 70000 ot 70000 4
qiskit qiskit
gmod gmod cirg rq
arisp 60000 arisp 60000 4
grisp quapl quapl 9 q#
50000 50000 4
= +
5 5
£] £
40000 4 arisp ciskit 40000 4 arisp qiskit
Language
30000 - 30000 1 s
q#
a qiskit
quapl 20000 20000 - amod
qrisp
amod qmod qmod quapl
T T T T T T T 10000 - T T 4 T T T T T T 10000 - T T T T T T
20 22 24 26 28 30 32 34 36 20 22 24 26 28 30 32 34 36 6 8 10 12 14 16 18 20
Loc Loc cc
Volume vs Effort Difficulty vs Effort LOC vs Vocabulary
Language auapl 800001 anguage quapl 50 91 Language quapl
cirg crg cirg
a# 70000 - a# a#
qiskit qiskit 45 4 qiskit
gmod cirg gmod arq gmod q¥
qrisp 60000 qrisp arisp
quapl a# quapl a quapl
40
50000 - 2
= 3 dirg
2 K
. & . g
grisp ~ cdiskit 40000 giskit arisp g3 qiskit
30000 s
304 arisp
20000
amod gmod 2579 o gmod
T T T T T T T T T 10000 4 T T T T T T T T T T T T T T T T
400 500 600 700 800 900 1000 1100 1200 1300 32 36 40 44 48 52 56 20 22 24 26 28 30 32 34 36
Volume Difficulty Loc

Corrales-Garro, F., Valerio-Ramirez, D., Nufiez-Corrales, S. (2025) Is Productivity in Quantum Programming Equivalent to Expressiveness?

arxiv:2504.08876

NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Lesson 7: generation/validation replace
programming at very large hardware scales

VLQI: very large quantum

VLSI: generate and optimize -> validate) .
integration

dd
! module my_nand (input x, y, output f);

Qm
supplyl vdd; Qg ILI | I ‘
l supply0 gnd; Qi‘ m — '_"_ll]
_qlz p wire a; 2 I
// NAND gate body 10) i —{ H| QO | '

'F‘ | |

d p2 = | |
pmos pl (f, vdd, x); |0) (H|— —{H| :> 0?
pmos p2 (f, vdd, y); ! L ! -
$— /=(w)| nmosnl (f, a, x); 0 —x}—#] AR t] . %

‘ : utip-qip go : -
" " l nmos n2 (a, gnd, y); g
. " endmodule g1
a] |1

g — t
g - - _} /=)

Utility-scale, fault-tolerant quantum computers pose a wicked control problem for humans. Most likely, many of these are NP-HARD. VLQI
will be self-bootstrapping.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Lesson 8: resist to optimize within differences
that make no difference

programs programs

circuits circuits

pulses pulses

Optimized pulse-level code

Yy Vv

As quantum computers become larger (>104 logical qubits), optimizations must occur as high up as possible.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Lesson 9: modularity and indirection organize
complexity o Befie®) |eafos)
1%

(AN
alloc
ull e A VAR I CY S > +11 ﬂllﬂ
NS
it EEZNL
LR i 1 7 IR 1 R +o+ 1 (2]]1]3]
NSO
1 Fig. 17. Result of symmetrization on the initial pro- Fig. 18. Unique physical representation of state
H gram state from Figure 12 (normalizing amplitudes not 1< [1,2] (normalizing amplitudes not shown),
shown). The symmetrized free list exists in a superpo- which stores datain a superposition of all possible
SORTING LINKED LIST sition of all possible permutations. allocation sites and is history-independent.
Data Structure Reversible Recursion Mutation Complexity LoC Qubits Gates
List
— length Yes Yes No O(n) 20 34n + 32 23n+3
TR EE — sum Yes Yes No O(n) 20 34n + 40 21n+3
blog.algomaste r_io — find_pos Yes Yes No O(n) 20 42n+31 19n+3
— remove Yes Yes Yes O(n) 48 26n + 56 42n+3
Stack (list)
- push_front Yes No Yes o(1) 8 40 4
— pop_front Yes No Yes o(1) 8 48 4
Queue (list)
— push_back Yes Yes Yes O(n) 21 34n + 32 24n
— pop_front Yes No Yes 0(1) 8 48 4
String (word)
— is_empty Yes No No 0o(1) 2 25 3
— length Yes No No o(1) 2 24 1
E — get_prefix Yes No No O(k) 8 11k 52
— get_substring Yes No No O(k) 8 12k 54
— get Yes No No O(k) 7 6k+1 19
— is_prefix Yes Yes No O(poly(k)) 26 kK +11k 98k +3
— num_matching Yes Yes No O(poly(k)) 42 Kk*+13k+4 110k + 127
GR APH QUEUE : ~ equal Yes No No o(k) 8 6k+3 5
— concat Yes No No O(k) 9 11k 8
— compare Yes Yes No O(poly(k)) 27 5k% + 12k 108k +3
sT A CK Set (radix tree)
— insert Yes Yes Yes O(poly(k)) 136 13k*+21k+9 1440k% + 5056k
— contains Yes Yes No O(poly(k)) 334 17k*+18k+2 784k%+1612k+1
Set (hash table)*
— insert Yes Yes Yes O(n) 63 52n+72 68n + 15
— contains Yes Yes No O(n) 7 52n + 81 136n + 39

* Hash table-based sets are not history-independent.

Few guantum data structures, more needed to scale up to utility-scale systems. _
Yuan, C. and Carbin, M., 2022. OOPSLAZ2.

NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Leadership Class Compute Facility - LCCF
(TACC+NCSA+IQUIST)

HPC+AI @ NCSA

QPU @ IQUIST

NVIDIA Grace Hopper Superchip
CPU LPDDR5X

GRACE 5 HOPPER 18x NVLINK 4
GPU 900 GB/s 3

HIGH-SPEED
NVLINK NETWORK
< 256 GPUs

]

1

: CPU LPDDR5X
: <512 GB
1

1

Tight HPC-AI-QPU integration Development of quantum Deploy research and user
cyberinfrastructure access

1T ILLINOIS NCSA

Separation of concerns to promote
opportunistic refinement

Quantum assembly language

User program :
Traps and interrupts?

Ideal gates
Lo HPC svst QPU Instruction set QPU state
% yS em QPU architectu re Ideal gates to native gates
X < Activation/error signals
é QPU library
Z

Interface Scheduling/mapping of native gates

>
. Qubit reset, native gates,
(Hardware QPU deVICE on measurement
manager testbed + control Quantum control
hardware/software Pulse level programming
Resonators, Transmons

Testbed + device

&=
©
Y
o
= <
N
D)
o

NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Lab

... differs from how implementation looks like

U 1
Y Y

Remote
| Backend | R QPU
manager
access
Az i
lccfq Results Task QPU state
QPU code IID')t/)thon — handler dispatcher monitor
| }ary . . A

hardware §
manager

]

< = Queue
accelerated J\, State
ML tasks o machine

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Academic hardware - Back to the 1940-1950

UPenn 1945 (ENIAC) Harvard 2024 (HQI)

Staying at the forefront is messy. But: not all mess is unavoidable.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Vendor hardware - Back to the 1950-1960

UF Gainesville 1968 (Burroughs) Munich Valley 2024 (IQM)

Market pressures drive innovation fast. Market pressures explain technology gaps.

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Plan to throw one (implementation)
away; you will, anyhow.

— Pred Brooks —

AZ QUOTES

NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Back to basics: seeking expressiveness

Notation as a Tool of Thought

Kenneth E. Iverson
IBM Thomas J. Watson Research Center

Key Words and Phrases: APL, mathematical
notation
CR Category: 4.2

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Author’s present address: K.E. Iverson, I.P Sharp Associates, 145
King Street West, Toronto, Ontario, Canada M5SH1J8.
© 1980 ACM 0001-0782/80/0800-0444 $00.75.

444

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

The importance of nomenclature, notation, and
language as tools of thought has long been recog-
nized. In chemistry and in botany, for example,
the establishment of systems of nomenclature by
Lavoisier and Linnaeus did much to stimulate and
to channel later investigation. Concerning lan-
guage, George Boole in his Laws of Thought
[1, p24] asserted '"That language is an instru-
ment of human reason, and not merely a medium
for the expression of thought, is a truth generally
admitted."

Mathematical notation provides perhaps the
best-known and best-developed example of lan-
guage used consciously as a tool of thought. Recog-
nition of the important role of notation in mathe-
matics is clear from the quotations from mathema-
ticians given in Cajori's A History of Mathemat-
ical Notations [2, pp.332,331]. They are well
worth reading in full, but the following excerpts
suggest the tone:

By relieving the brain of all unnecessary work,
a good notation sets it free to concentrate on
more advanced problems, and in effect increases
the mental power of the race.

A.N. Whitehead

Communications August 1980
of Volume 23
the ACM Number 8

1. Important Characteristics of Notation

In addition to the executability and universali-
ty emphasized in the introduction, a good notation
should embody characteristics familiar to any user
of mathematical notation:

-Ease of expressing constructsarising in problems.
«Suggestivity.

-Ability tosubordinate detail.

-Economy.

-Amenability to formal proofs.

The foregoing is not intended as an exhaustive list,

but will be used to shape the subsequent discus-
sion.

Conclusion: we need prescriptive, abstraction-driven
design toward HPC-QPU programmability

Low: hardware engs + Mid: comp. architects + High: tool writers + app
firmware engs systems programmers developers
|
T
A 4 ©
CQ system services L(_C::
0 q q Q
Applications
Qé_ Resource management 3 PP g
[y . S5
3 Classical-quantum VM * «“
Y ?
=
: l
1™ Native pulses to intent-aware pulses A CQ frameworks
7 -r1 Quantum instructions/sigs A
Intent-aware pulses to optimized pulses BN | N . CQ libraries 3
hd i Quantum microprograms Q! 2
: : i CQ languages + compilers =
5 -1 Quantum nanoprograms o S
Accessible qubit modality model =] el S CQ assembler
o
o) 4
- I

Instructions Resources Algorithms Problems

Driving abstraction: | Physics Pulses

E NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

	Programming models for hybrid HPC-QPU applications: the deeper
	National Center for Supercomputing Applications
	Slide 3
	Slide 4
	What have we learned in 80 years of classical computing that re
	Food for thought: why do build these systems and how should we
	Most pivotal advances come from abstract understanding of resou
	Lesson 1: good abstract machines solve 80% of the algorithm dev
	But: none of the existing quantum abstract machines are adequat
	Lesson 2: the performance-expressiveness trade-off is universal
	Lesson 3: control software becomes control hardware with time
	Lesson 4: good stacks enable opportunistic refinement for hw-sw
	Lesson 5: good stacks separate concerns efficiently for program
	Lesson 6: circuits are not high-level constructs
	Why do we want good abstractions?
	The state of quantum programming today
	Quantum programming languages lack sufficient expressiveness an
	Lesson 7: generation/validation replace programming at very lar
	Lesson 8: resist to optimize within differences that make no di
	Lesson 9: modularity and indirection organize complexity
	Slide 21
	Separation of concerns to promote opportunistic refinement
	... differs from how implementation looks like
	Academic hardware - Back to the 1940-1950
	Vendor hardware - Back to the 1950-1960
	Slide 26
	Back to basics: seeking expressiveness
	Conclusion: we need prescriptive, abstraction-driven design tow

