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What have we 
learned in 80 years 
of classical 
computing that 
remains useful for 
programming 
utility-scale HPC-
QPU systems?



Food for thought: why do build these 
systems and how should we help people 
program them?

• Marvin Minsky (1967): “programming is a good medium for expressing 
poorly understood and sloppily formulated ideas”

• Alan J. Perlis, Foreword to SICP (1985): “a programmer should acquire 
good algorithms and idioms.”

• Harold Abelson, SICP (1985): “Programs must be written for people to 
read, and only incidentally for machines to execute.”



Most pivotal advances come from abstract 
understanding of resources

Space, Time Space, Time
Superposition, Entanglement, Interference 

The theory of quantum computation and quantum computational complexity need to become substantially more streamlined to address 
upcoming needs beyond 104 logical qubits. Much harder, urgent, underfunded and unattended problem.



Lesson 1: good abstract machines solve 80% of 
the algorithm development problem 

Good abstract machines have instructions referring to functions and high-level objects. QRAM/QRASP are hardware simulators.
Núñez-Corrales, S., 2023. arXiv:2307.08422.

Random Abstract Machines



But: none of the existing quantum abstract 
machines are adequate!

Núñez-Corrales, S., Di Matteo, O., Dumbell, J., Edwards, M., Giusto, E., Pakin, 
S., Stirbu, V.Stęchły, M. (2025, submitted). Productive Quantum Programming 
Needs Better Abstract Machines. 2025 IEEE International Conference on 
Quantum Computing and Engineering (QCE). IEEE/arXiv (submitted).



Lesson 2: the performance-expressiveness 
trade-off is universal and unavoidable

Performance
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Expressive power:

How many different 
problems can I describe 
(and solve!) with tool X?

Performance:

How few resources can 
I use to solve a specific 
problem with tool X?

Harder to measure:

- # of use cases
- # of instances of 

code reuse
- # of lines of code

Easier to measure:

- Time
- Resource 

usage/pressure

Limited by:

- Theoretical bounds
- Problem features (e.g., size)
- Human needs (e.g., code 

maintainability and 
readability)

Limited by

- Technology
- Available hardware 

resources
- Hidden costs of 

compilation / interpretation 
+ OS

ideal
realistic
e.p. optimized

performance optimized

Good programming 
practices help us get much 
closer to the realistic trade-
off curve.

We lack programming models that induce good practices in quantum 
computing. Pulse-level and circuit-level programming are likely not one of 
them.



Lesson 3: control software becomes control 
hardware with time

Pulse-level synthesis and even higher quantum control primitives will likely become 
part of an SoC-like architecture.



Lesson 4: good stacks enable opportunistic 
refinement for hw-sw co-design

How we think it is: What we should aim for:

Physical qubits
Pulse-level synthesis

QECC+QEM
Logical qubits

Classical-quantum organization
Classical-quantum ISA
Orchestration (aka OS)

Languages

Applications

Current quantum stacks focus too much on qubit function/performance, not 
enough on how the interfaces across layers should communicate.

Hardware 
detail free 
zone

Algorithms (aka Libraries)



Lesson 5: good stacks separate concerns 
efficiently for programmers

How we think it is: What we should aim for:

Heuristic: the difficulty of programming scales roughly proportional to the 
cube of the number of hardware details required to write code.

Physical qubits
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Classical-quantum organization
Classical-quantum ISA
Orchestration (aka OS)

Languages

Applications

Hardware 
detail free 
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Algorithms (aka Libraries)



Lesson 6: circuits are not high-level constructs

Hardwar
e

ProgramsLow level High level

?

A. Denotational semantics: constructs isomorphic to functions within a space of objects w/ a closed 
algebra
B. Representation independent: constructs should not vary if the “digital” representation changes
C. Compositionality: the effect of large constructs is understandable from composition of smaller ones 
without abandoning representation independence

Quantum algorithms and applications will be found more quickly once we find true high-level constructs. Not there yet.
Núñez-Corrales, S., Frenkel, M. and Abreu, B., QCE 23; Di Matteo O, Núñez-Corrales S, Stęchły M, Reinhardt SP, Mattson T. 
arXiv:2405.13918.



Why do we want good abstractions?

Separation of 
concerns

Well-defined 
interactions 

between 
adjacent layers

Opportunisti
c refinement

…

Di Matteo, O., Núñez-Corrales, S., Stęchły, M., Reinhardt, S.P. and Mattson, T., 2024, September. An abstraction hierarchy toward productive 
quantum programming. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 1, pp. 979-989). IEEE.



The state of quantum programming today

Di Matteo, O., Núñez-Corrales, S., Stęchły, M., Reinhardt, S.P. and Mattson, T., 2024, September. An abstraction hierarchy toward productive 
quantum programming. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 1, pp. 979-989). IEEE.

2XXX2024
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Quantum programming languages lack 
sufficient expressiveness and productivity

Corrales-Garro, F., Valerio-Ramírez, D., Núñez-Corrales, S. (2025) Is Productivity in Quantum Programming Equivalent to Expressiveness? 
arXiv:2504.08876



Lesson 7: generation/validation replace 
programming at very large hardware scales
VLSI: generate and optimize -> validate

Utility-scale, fault-tolerant quantum computers pose a wicked control problem for humans. Most likely, many of these are NP-HARD. VLQI 
will be self-bootstrapping.

VLQI: very large quantum 
integration 



Lesson 8: resist to optimize within differences 
that make no difference

circuits

pulses

programs

Optimized pulse-level code

circuits

pulses

programs

As quantum computers become larger (>104 logical qubits), optimizations must occur as high up as possible.



Lesson 9: modularity and indirection organize 
complexity 

Yuan, C. and Carbin, M., 2022. OOPSLA2.
Few quantum data structures, more needed to scale up to utility-scale systems.



Leadership Class Compute Facility - LCCF
(TACC+NCSA+IQUIST)

QPU @ IQUIST
HPC+AI @ NCSA

Tight HPC-AI-QPU integration Development of quantum 
cyberinfrastructure

Deploy research and user 
access



QPU device on 
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... differs from how implementation looks like

QPU code

HPC code
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Academic hardware - Back to the 1940-1950

UPenn 1945 (ENIAC) Harvard 2024 (HQI)
Staying at the forefront is messy. But: not all mess is unavoidable.



Vendor hardware - Back to the 1950-1960

UF Gainesville 1968 (Burroughs) Munich Valley 2024 (IQM)

Market pressures drive innovation fast. Market pressures explain technology gaps.





Back to basics: seeking expressiveness



Conclusion: we need prescriptive, abstraction-driven 
design toward HPC-QPU programmability

Low: hardware engs + 
firmware engs

Mid: comp. architects + 
systems programmers

High: tool writers + app 
developers

Original circuit to QECC circuit

Optimized circuit to native gate set

Native gate set to naive pulses

Native pulses to intent-aware pulses

Intent-aware pulses to optimized pulses

QECC circuit to optimized circuit

Accessible qubit modality model

Quantum hardware

Quantum instructions/sigs

Quantum microprograms

Quantum nanoprograms

Quantum motifs

Classical-quantum VM

Resource management

CQ system services

CQ libraries

CQ languages + compilers

CQ assembler
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